首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   3篇
化学   43篇
晶体学   1篇
力学   2篇
数学   10篇
物理学   17篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2015年   4篇
  2013年   2篇
  2012年   3篇
  2011年   7篇
  2010年   2篇
  2009年   3篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有73条查询结果,搜索用时 562 毫秒
21.
The atomic layer deposition of W2O3 films was demonstrated employing W2(NMe2)6 and water as precursors with substrate temperatures between 140 and 240 degrees C. At 180 degrees C, surface saturative growth was achieved with W2(NMe2)6 vapor pulse lengths of >/=2 s. The growth rate was about 1.4 A/cycle at substrate temperatures between 140 and 200 degrees C. Growth rates of 1.60 and 2.10 A/cycle were observed at 220 and 240 degrees C, respectively. In a series of films deposited at 180 degrees C, the film thicknesses varied linearly with the number of deposition cycles. Time-of-flight elastic recoil analyses demonstrated stoichiometric W2O3 films, with carbon, hydrogen, and nitrogen levels between 6.3 and 8.6, 11.9 and 14.2, and 4.6 and 5.0 at. %, respectively, at substrate temperatures of 160, 180, and 200 degrees C. The as-deposited films were amorphous. Atomic force microscopy showed root-mean-square surface roughnesses of 0.7 and 0.9 nm for films deposited at 180 and 200 degrees C, respectively. The resistivity of a film grown at 180 degrees C was 8500 microhm cm.  相似文献   
22.
The synthesis, solid-state structure, and solution structure of Cr2(tBu2pz)4 are described. This complex is obtained by sublimation of the monomeric species Cr(tBu2pz)2(4-tBupy)2 and contains long chromium-chromium distances that are enforced by the divergent nature of the pyrazolato ligands.  相似文献   
23.
Kählerian twistor operators are introduced to get lower bounds for the eigenvalues of the Dirac operator on compact spin Kähler manifolds. In odd complex dimensions, manifolds with the smallest eigenvalues are characterized by an over determined system of differential equations similar to the Riemannian case. In these dimensions, we show the existence of a unique natural Kählerian twistor operator. It is also proved that, on a Kähler manifold with nonzero scalar curvature, the space of Riemannian twistor-spinors is trivial.This work has been partially supported by the EEC programme GADGET Contract Nr. SC1-0105  相似文献   
24.
The endiandric acids are classic targets in natural product synthesis. The spectacular 8π/6π-electrocylisation/intramolecular Diels–Alder (8π/6π/IMDA) reaction cascade at the heart of their biosynthesis has inspired practitioners and students of pericyclic chemistry for nearly forty years. All previous synthetic approaches have sought to prepare a linear tetraene and thereby initiate the cascade. In this communication we demonstrate the use of cyclooctatetraene to rapidly intercept the 8π/6π/IMDA cascade at the cyclooctatriene stage. Endiandric acid J and beilcyclone A are prepared for the first time in six and five steps, respectively. The strategy features a tactical overall anti-vicinal difunctionalisation of cyclooctatetraene through SN2′ alkylation of cyclooctatetraene oxide followed by an intriguing tandem Claisen rearrangement/6π-electrocyclisation from the corresponding vinyl ether. This rapidly constructs an advanced bicyclo[4.2.0]octadiene aldehyde intermediate. Olefinations and intramolecular Diels–Alder cycloadditions complete the syntheses. This establishes a short and efficient new path to the endiandric acid natural products. DFT modelling predicts thermal racemisation of bicyclo[4.2.0]octadiene intermediates, dashing hopes of enantioselective synthesis.

A new strategy to the endiandric acid natural products is demonstrated by intercepting the 8π/6π/IMDA pericyclic cascade through a tactical anti-vicinal difunctionalisation of cyclooctatetraene.  相似文献   
25.
Classical trajectory simulations are performed to study energy transfer in collisions of protonated triglycine (Gly)(3) and pentaglycine (Gly)(5) ions with n-hexyl thiolate self-assembled monolayer (SAM) and diamond [111] surfaces, for a collision energy E(i) in the range of 10-110 eV and a collision angle of 45 degrees. Energy transfer to the peptide ions' internal degrees of freedom is more efficient for collision with the diamond surface; i.e., 20% transfer to peptide vibration/rotation at E(i) = 30 eV. For collision with diamond, the majority of E(i) remains in peptide translation, while the majority of the energy transfer is to surface vibrations for collision with the softer SAM surface. The energy-transfer efficiencies are very similar for (Gly)(3) and (Gly)(5). Constraining various modes of (Gly)(3) shows that the peptide torsional modes absorb approximately 80% of the energy transfer to the peptide's internal modes. The energy-transfer efficiencies depend on E(i). These simulations are compared with recent experiments of peptide SID and simulations of energy transfer in Cr(CO)(6)(+) collisions with the SAM and diamond surfaces.  相似文献   
26.
Varying the coinage metal in cyclic trinuclear pyrazolate complexes is found to significantly affect the solid-state packing, photophysics, and acid-base properties. The three isoleptic compounds used in this study are [[3,5-(CF3)2Pz]M]3 with M = Cu, Ag, and Au (i.e., Cu3, Ag3, and Au3, respectively). They form isomorphous crystals and exist as trimers featuring nine-membered M3N6 rings with linear two-coordinate metal sites. On the basis of the M-N distances, the covalent radii of two-coordinate Cu(I), Ag(I), and Au(I) were estimated as 1.11, 1.34, and 1.25 angstroms, respectively. The cyclic [[3,5-(CF3)2Pz]M]3 complexes pack as infinite chains of trimers with a greater number of pairwise intertrimer M...M interactions upon proceeding to heavier coinage metals. However, the intertrimer distances are conspicuously short in Ag3 (3.204 angstroms) versus Au3 (3.885 angstroms) or Cu3 (3.813 angstroms) despite the significantly larger covalent radius of Ag(I). Remarkable luminescence properties are found for the three M3 complexes, as manifested by the appearance of multiple unstructured phosphorescence bands whose colors and lifetimes change qualitatively upon varying the coinage metal and temperature. The multiple emissions are assigned to different phosphorescent excimeric states that exhibit enhanced M...M bonding relative to the ground state. The startling luminescence thermochromic changes in crystals of each compound are related to relaxation between the different phosphorescent excimers. The trend in the lowest energy phosphorescence band follows the relative triplet energy of the three M(I) atomic ions. DFT calculations indicate that [[3,5-(R)2Pz]M]3 trimers with R = H or Me are bases with the relative basicity order Ag < Cu < Au while fluorination (R = CF3) renders even the Au trimer acidic. These predictions were substantiated experimentally by the isolation of the first acid-base adduct, [[Au3]2:toluene]infinity, in which a trinuclear Au(I) complex acts as an acid.  相似文献   
27.
We report the realization of the continuous wave laser emission in the orange at 607 nm from a Pr:BaY(2)F(8) (Pr:BYF) crystal pumped by a blue GaN laser diode. A maximal output power of 78 mW is obtained in a quasi-single transverse mode beam. The effect of reabsorption losses at the laser wavelength is also evidenced.  相似文献   
28.
Heavy atom-induced phosphorescence of organic chromophores that originates from spin?Corbit coupling (SOC) is always accompanied by fluorescence quenching concomitant with a reduction of the triplet excited state lifetime. However, such changes are typically manifest by fluorescence quenching at room temperature and phosphorescence sensitization at cryogenic temperatures. Herein we overview our efforts over the past decade in which both internal and external heavy-atom effects (HAEs) can trigger room temperature phosphorescence (RTP) with dramatic shortening of the phosphorescence radiative lifetime by several orders of magnitude. Such spectral properties render new classes of phosphorescent materials for potential use in organic light-emitting diodes (OLEDs). The molecular systems described in this paper are organic fluorophores that are ??-complexed or ??-bonded to a multinuclear d10 transition metal center, the presence of which leads to phosphorescence sensitization because of the significant SOC in such materials.  相似文献   
29.
Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured phosphorescence bands in compounds 3-5 strongly suggest emissive states of mixed (3)MLCT/(3)LLCT character. Density functional theory (DFT) calculations have been carried out to gain insight on the frontier orbitals, and to rationalize the electrochemical and photophysical properties of the compounds based on their electronic structures.  相似文献   
30.
Treatment of M(allyl)(Cl)(CO)2(py)2 (M = Mo, W) with 1 equiv. of potassium pyrazolates in tetrahydrofuran at −78 °C afforded M(allyl)(R2pz)(CO)2(py)n (R2pz = 3,5-disubstituted pyrazolate; n = 1, 2) in 68-81% yields. X-ray crystal structure analyses of Mo(allyl)((CF3)2pz)(CO)2(py)2 and W(allyl)(tBu2pz)(CO)2(py) revealed η1- and η2-coordination of the (CF3)2pz and tBu2pz ligands, respectively. Analogous treatment of Mo(allyl)(Cl)(CO)2(NCCH3)2 with 1 equiv. of tBu2pzK in tetrahydrofuran at −78 °C afforded [Mo(allyl)(tBu2pz)(CO)2]2 in 79% yield. An X-ray crystal structure analysis of [Mo(allyl)(tBu2pz)(CO)2]2 showed a dimeric structure bridged by two μ-η21-tBu2pz ligands. Treatment of M(allyl)(Cl)(CO)2(py)2 with 1 equiv. of lithium 1,3-diisopropylacetamidinate or lithium 1,3-di-tert-butylacetamidinate in diethyl ether at −78 °C afforded M(allyl)(iPrNC(Me)NiPr)(CO)2(py) and M(allyl)(tBuNC(Me)NtBu)(CO)2(py), respectively, in 68-78% yields. The new complexes were characterized by spectral and analytical methods and by X-ray crystal structure determinations. M(allyl)(iPrNC(Me)NiPr)(CO)2(py) adopt pseudo-octahedral geometry about the metal centers, with the 1,3-diisopropylacetamidate ligand nitrogen atoms spanning one axial site and one equatorial site of the octahedron. By contrast, M(allyl)(tBuNC(Me)NtBu)(CO)2(py) adopt pseudo-octahedral structures in which the two 1,3-di-tert-butylacetamidinate ligand nitrogen atoms span two equatorial coordination sites. Sublimation of M(allyl)(tBuNC(Me)NtBu)-(CO)2(py) at 105 °C/0.03 Torr afforded ?7% yields of M(allyl)(tBuNC(Me)NtBu)(CO)2, along with sublimed M(allyl)(tBuNC(Me)NtBu)(CO)2(py). W(allyl)(tBuNC(Me)NtBu)(CO)2 exists in the solid state as a 16-electron complex with distorted square pyramidal geometry. Many of the new complexes undergo dynamic ligand site exchange in solution, and these processes were probed by variable temperature 1H NMR spectroscopy. The volatilities and thermal stabilities were evaluated to determine the potential of the new complexes for use as precursors in thin film growth experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号